Blog Posts

My Interest in Protein Engineering Research

By Xiaole Wang

In one of my undergraduate biochemistry labs, I was introduced to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This is a process by which proteins are separated based on size from a protein sample with various kinds of protein. Running these experiments sparked my interest in biology research. After this experience, I joined a lab where I studied a food related polypeptide derived from naked oats. I was surprised to find that this kind of polypeptide is able to prevent blood sugar spikes after meals. Because I desired to understand proteins with greater nuance, I followed up my undergraduate study by enrolling in the NYU Tandon School of Engineering, majoring in biotechnology. In addition to my studies in the Engineering department, Dr. Montclare has given me the opportunity to volunteer in her lab where I have broadened my experience in protein related research, especially in protein engineering.



Line pressed with loading buffer of samples during SDS-PAGE


I am amazed that proteins, composed of only 20 different building blocks, bear function in almost all of life’s activities. They play an essential role in daily exercise, cellular growth, metabolism, immunity, gene inheritance, and evolution of species. From microscopic creatures to dinosaurs with legs the size of the Parthenon’s columns, life cannot exist without proteins. However, there are many proteins that remain unknown in their function. Scientists continue to make steps in uncovering the mystery of nature by identifying new proteins. With the advances in gene manipulation, it is now possible to produce artificial “engineered” proteins. These engineered proteins can be developed to address issues in human health care. For instance, the creation of Cetuximab, a drug used for cancer treatment, is achieved through protein engineering. Also, protein engineering made it possible to artificially synthesize insulin (Goeddel et al., 1979).


E.coli under microscope
E. coli (one kind of gut bacteria) under microscope


One of the top 10 largest dinosaurs

Currently, I am working on a research project with protein based hydrogels, a kind of biomaterial that absorbs water and binds drug molecules. Hydrogels are thus capable of retaining moisture or delivering drugs for wound healing. By means of protein engineering, I am able to let E. coli (a very common bacteria existing in our gut) produce protein needed for hydrogel. Then, I let the protein chemically cross-link with each other to form cross-linked molecules that are able to shape hydrogel. With necessary handling of the gel, its ability of drug delivery is then tested on a mouse with wound. It turns out that the hydrogel works well!

A master’s level is not enough for providing me with necessary knowledge and skills to go deeply into this field. I am committed to pursuing a PhD to continue my interest in protein engineering.



Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., … Riggs, A. D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Biochemistry, 76, 106-110


Image Sources:

Breaking the Gender Stereotypes in STEM

By Jordyn Pierre-Raphael

Most little girls like to play dress-up with their dolls, but when I was younger I always treated my dolls as “patients,” who needed my help with a fever or a stuffy nose. I remember that I would wear a lab coat and use my plastic stethoscope to listen to my patients’ heartbeats. At this young age is when I first decided I wanted to become a doctor for the simple reason that I found helping people to be rewarding. In retrospect, I acknowledge my naivety because many occupations involve helping people in one way or another, but my motivations have certainly changed as I have matured and become more interested in the field of science.

In high school, I have developed a passion for science because it challenges me while simultaneously feeds my sense of curiosity. I have taken almost all of the accelerated science courses offered at my school, and my favorite of the many I have taken so far would definitely have to be Experimental Chemistry. It is a semester laboratory intensive course where I was exposed to some of the challenges that must be addressed in moving a chemical reaction from the page to the plant. This course taught me about advanced laboratory techniques for synthesis, purification, and analysis of compounds, including thin layer chromatography, gas chromatography, and UV-Vis spectroscopy, and the hands-on aspect of the course reminded me of my work in the Montclare Lab. I think the most important concept that I learned from the course is how important it is to approach problem-solving with a creative and collaborative mindset, and I have carried these skills with me as I work in the lab because of how pertinent they are.

I feel as though it is important to note that in my Experimental Chemistry class there were twelve students, and I was one of only three girls. This has been a recurring experience for me because almost all of my science classes are male-dominated, which caused me to become used to being interrupted or talked over more times than I could count by my male peers.

After talking with some of my female peers, I realized that we shared similar experiences in our science classes. Many talked about how they avoided participating in class because they feared judgment from their male peers, and this was something I had experienced but worked to overcome because it was stifling my learning experience. This is why I restarted the Women in STEM club at my school because I wanted the girls in my community to have a space where they could feel encouraged to study and then enter STEM fields as well as gain exposure to STEM-related opportunities at school. Over the past year of leading Women in STEM, it has been amazing to see other girls in my community be inspired to join the STEM field by enrolling in my school’s science courses, such as the Independent Science Research program which allowed me to work in the Montclare Lab. The Independent Science Research Program is a three year course at my school in which select high school students are able to pursue a science field of their interest, work in a professional research lab, and participate in science competitions during their junior and senior year. It is more of an experience than a class, in fact, as you are able to gain extensive public speaking practice, gain experience reading professional journal articles, and become knowledgeable about a field that you are passionate about. Few high school students are able to say that they worked in a research lab and gained research experience, and I can definitely say that I cherish the opportunity I have been given because I have been able to work with college graduate and undergraduate students and postdocs who are all so passionate about a field of research. My experience at the Montclare Lab has certainly inspired me to pursue scientific research when I am a college student!


Jordyn Pierre-Raphael


What I’ve Learned to Live My Best Life as a Maker in the Lab

By Shengbo Guo

Edited by Eliza Neidhart

Having graduated two months ago, I am situated at a point of transition. I cannot be counted as a student technically, yet I continue to work in the lab and interact with the world just as any other student. We students stay up late, wake up early, and have fully committed our lives to be intertwined with work. My research in protein engineering requires me to return to the lab at strange times.


What is a protein? We know proteins are found in the meat and beans that we eat. This is because they are the building blocks of animals and plants! Inside of animals and plants, they act like tiny workers in a factory, performing tasks for the larger organism. Some proteins chop our food into tiny digestible bits (proteins can chop proteins! woa!) while others do quality control to ensure our bodies produce safe and quality materials.

The protein I am working on is Phosphotriesterase, aka PTE. I think of it as a tiny machine that convertsF toxic pesticides and military grade nerve agents into nontoxic substances

Now, back to my daily life. To give you a better idea of my research I’d like to describe my research processes as if it were a recipe for finicky cookies.



  • 3 Tablespoons of yeast

  • 6 cups flour

  • 1 cup 98-degree F water


  1. First, mix yeast, flour, and water. Allow to rise for 24 hours.  *Every 3 hours additional warm water must be added.

  2. Next, knead the dough for a full 10 hours.

  3. Refrigerate overnight.

  4. Form flower shapes in the morning. *Unfortunately, this step is very very slow. The flowers tend to crack. They do not look as pretty as you’d imagined. There are no photos showing you what they should look like because this has never been done before.

  5. Finally, bake flower cookies for 2 days in a solar powered oven. *For some reason this is the only way they have a chance of remaining intact. Usually, the pastry flowers do not turn out as expected and need to be made again.

Warning: The recipe means loss of sleep on day 1, tired hands on day 2, and frustration on day 3. This recipe may need to be attempted (with adaptations) 10 times for an acceptable result. Yet, success is delicious.

While my lifestyle is exhausting due to these long and intensive recipes, I have developed techniques to live my best life.

The first way I stay happy is through interactions with good people. I work most closely with Andrew Olsen, who is not only a good labmate, but also an excellent mentor. I remember the first day I met him, the day of my interview for the Montclare lab. He found me nervous, hovering in front of the lab building. Amazingly, his affable nature was able to calm me somewhat. I still remember the interview questions he asked me as well as the simultaneous nervous churning of my stomach. Anyway, I really enjoy life here with Andrew and my other labmates.

In the lab, recording and summarizing has made my life better. When I begin each experiment, I make detailed documentation of my process; not only the simple procedure which I can get from protocol. More importantly, I leave personal notes and reminders which can only come from practical experience. Returning to the baking metaphor, no cookbook would tell you that adding  dry flour to the cookies before baking makes them crispier. However, hands on experience and notetaking would give a baker this insight. After recording, I have learned that summarizing plays an essential role in conceptually understanding research work. I am currently summarizing the lab’s entire workflow. Through this work, I have gained a fundamental understanding of our research which allows me to complete my portion of the workflow more successfully.

Regular exercise is helpful not only to my personal life, but also for my work. I play table tennis in the basement of my lab building in the evenings. It is relaxing and allows me to sleep more soundly. The following day I am energized and more efficient in the lab. Additionally, I have made friends while playing. Being from China with english as my second language, I enjoy the opportunity to continue practicing during these social times. My improved English skills have been helpful to my daily life and communication in the lab. In addition to pingpong, I play soccer on the weekends for a cardio workout.  Working out along with note taking and summarizing help me to live a reduced stress life even with the long work hours that protein engineering requires.


Materials I Consume in a Single Bioengineering Experiment

By Yifei Wang

When my mom last visited me from China she saw my daily tasks in the Montclare lab. Upon returning home, she confided that she now understood why clinical treatments are so expensive. She saw the high cost of bioengineering research, including both physical materials and dollars. Inspired by the discussion with my mother, I decided to count the number of single use items consumed in a cycle of sample protein production to quantify some of the costs of research.

Sample Protein Production Overview

The production of sample protein begins by inserting the target protein’s DNA into E.coli. cells. The E.coli. containing the protein’s DNA are grown to produce the desired protein, almost like a protein factory. Our lab uses these proteins as a drug delivery material.

Sample Protein Production 

We first make a dish to grow and select cells. E.coli. take 14-16 hours to grow on the plates. This step requires the following single-use items: 3 plastic dishes, 3 glass pipettes, 2 small Eppendorf tubes, and 6 micropipette tips.


Then we select a small portion one cell colony and place it into a test tube with media for growing cells. We let it grow overnight. We need 1 glass test tube, 10 micropipet tips, and 3 serological pipettes for this step.

The next day we grow the cells in a larger flask for a greater yield. We centrifuge them into a pellet and dump the liquid media. In this step approximately 8 Eppendorf tubes, 6 micropipette tips, and 6 serological pipettes are used for each of the 6 pellets.

Next, we smash the cells with ultrasound to harvest the protein. Finally, we purify the harvested protein. For purification, we need about 20 Falcon tubes, 2 serological pipettes, 18 micropipette tips, and 14 Eppendorf tubes.

In total, for the product of a single sample protein, we consume 64 Eppendorf tubes, 70 micropipette tips, 3 glass pipettes, 3 plastic plates, 1 glass test tube, 41 serological pipettes, and 20 falcon tubes. Additionally, each experiment consumes buffers, chemicals, and time.

With each step we utilize new single use items such as pipette tips and tubes. While this may seem wasteful, it is the best way we have contrived to minimize contamination. When a sample is contaminated, we are unable to produce the protein we need. Therefore, the experiment must be run again. This wastes even more resources!


We’d love to hear from you with suggestions for materials and time efficiency in research. Please feel free to contact me via twitter!

Yifei Wang



The Stars In My Television

By Joseph Thomas


As the static of the TV crackled, I heard my mom call from the kitchen. She couldn’t understand why I would just sit on the floor and stare into the screen set to a channel with no video signal. As the specks of gray and black flashed in front of me I couldn’t help but imagine I was the captain of a rocket flying through the stars at warp speed. Endless worlds passed by me in an instant and I had a sense that my purpose in life was to explore and catalog these unknowable realms. I knew that space travel was still in its infancy, but I was only five years old at the time and there was still plenty of time for technology to catch up to my ambitions. I knew that we would most likely have spaceships by the time I was 18 and that I would grow up to be a space captain. This is the first time in my life I distinctly remember yearning to explore the universe and find out what made it tick; my first scientific memory.


Mysid, TV noise, marked as public domain, more details on Wikimedia Commons.


As I grew older I explored other career options such as being a Major League Baseball pitcher, railroad engineer, and garbage man but I always seemed to come back to being some kind of explorer. As the idea of college loomed I was disheartened that Space Captain was still not a viable career, but there was still plenty of exploration to do on the earth as a biological scientist. As a society we have learned an enormous amount about life and how it functions, but we are only just scratching the surface. What could be more exciting than devoting one’s life to work on the fundamental understanding of how life works, and even better to use that knowledge to improve the quality of life of those around you? One day, these technologies will help our species reach the stars and in a small way my work may have contributed. There is still hope for my stellar career ambitions.


Most scientists share a similar story of how they got into the field, but we often fail to talk about our own failures and shortcomings. In high school I struggled with my classes and even came close to failing biology. In college I struggled with mental health and financial hardship and came very close to leaving science all together. Some days experiments may fail, and you will go home never wanting to think about science again. I thought that maybe science wasn’t for me since it was so difficult and appeared to come so easily to others. The turning point came after having some earnest discussions with colleagues and advisors only to find out that they shared the exact same struggles in their careers. These were successful PhD students and even tenured professors, yet they still had doubt in their own abilities. That is when it all clicked. Scientists are human beings. Such a simple concept but a very powerful one. I gave myself permission to fail, as long as I was willing to get back up and try again. The public often views science as a field only open to perfect geniuses, which discourages many people from following their curiosities. One of the most important lessons I have learned is that struggles are normal, and they do not mean you are a failure. Good scientists aren’t necessarily the brightest or most technically skilled people, but they are the people willing to push forward when the going gets tough.


If you are reading this and feel like the odds are stacked against you, I ask you to please just hold onto that curiosity that made you wonder if science was a good fit for you in the first place. Science wants you, and now more than ever it needs people from varying backgrounds. New fields are emerging everyday that are requiring people to challenge central dogma and examine things from fresh perspectives. Science may need brilliant, technical people but even more than that it needs curious explorers who are willing to press on and look for the stars in the TV static.


Joe Thomas