September 14th, 2020

Livin’ Like a Protein

Joshua Senior

Would you believe me if I told you that during Career Day in fourth grade, I told my homeroom teacher I wanted to be a protein when I grow up?

 

Neither would I. That is why I’m saying it now.

 

Don’t worry, you read that correctly. As a seventeen-year-old, I currently dream of becoming a protein when I grow up (even though I’m ‘grown’ in my sister’s eyes). Now, you’re probably thinking to yourself, “This kid’s absolutely insane.” My answer? Maybe. See, this isn’t the typical profession you would fill out a job application for, yet this hasn’t inhibited my imagination from chasing the impossible.

 

Sadly, my career aspirations of becoming a fully-functional protein don’t involve physically interacting with DNA histones or translocating across numerous cellular membranes. In fact, my fascination with becoming this macromolecular complex rests not in the specific operations of the protein molecule, but simply in its multifaceted nature.

 

Similar to proteins, my intellectual building blocks significantly contribute to my profound attachment to science. Since the age of eight, I’ve always been captivated by science. It wasn’t the vibrant school science fairs or the endless Bill Nye episodes in science class that caught my interest. No, my love for science came in the form of storytelling. Equipped with her daily experiences in the OR, my mother’s “bedtime tales” were engaging recounts of hospital cases she handled. Her medical sagas not only intrigued my sprouting scientific imagination, but her soothing voice always put me fast asleep.

 

As I grew older, this budding curiosity for science soon flourished, folding like proteins into an extensive love for Biology. During high school, I have found my personal active site in the major of Biological Sciences, and I plan to never unbind from this substrate of knowledge. Although I am one of few African-American students in the world of STEM, science has provided a channel of comfort. No matter if I am learning about the denaturing of enzymatic proteins under various pH environments in the classroom, or implementing mutations to Phosphotriesterase Enzymes sequence for computational research from the comfort of my home, my passion for STEM continues to break down the obstacles I confront being the an underrepresented minority student. There’s something therapeutic in studying science, and in doing so, I’ve discovered a very important theory: I already embody a protein.

To test this conjecture, I’ve decided to create an experimental design comparing me to two of the main types of proteins (Membrane proteins already have enough going on). Since I am a “scientist”, I thought I would provide to you with a detailed representation of the rigorous complexity of my testing.

 

 

Experimental Test 1: Globular Protein- Phosphotriesterase Enzymes

 

Like the Phosphotriesterase Enzymes I work with in the lab, which are globular proteins crucial in the enzymatic activities of the metabolic reactions all throughout eukaryotic organisms, I’m motivated to be a catalyst for change. Whether I’m volunteering at the soup kitchen during school holidays, or simply helping my sister with her biology homework every night, I relish in helping to activate positive change throughout my community. My pursuit to catalyze these outcomes has also propelled me to actively advocate against the detrimental impacts of climate change and environmental racism on underrepresented minority communities. Pushed by my power of service over self, I plan to use my “protein-like” functions to effectuate beneficial transformations greater than myself.

 

Experimental Test 2: Fibrous Proteins – COMPcc and Elastin Proteins

Cartilage oligomeric matrix (COMPcc) proteins and elastin proteins are fibrous proteins that play a key biological role in structural support in the body. In ways alike, I parallel their important responsibilities on the basketball court. As a point guard, I consistently provide foundational support to my teammates through signaling defensive play-calls and pointing out directions to initiate our offensive strategy, all while making sure our team-chemistry stays optimal. With my voice, I am able to bring the important directives of my coach to my teammates in quick fashion, carrying out our key plays in order to beat our opponents. The significant functions of these fibrous proteins is exemplified by my basketball identity, and I plan to add more qualities to this identity to create better victories not just for me, but my teammates.

 

 

While interning in the Montclare Lab, I have found that my “protein” aspiration extends far beyond myself and these three proteins. Through my protein computational design work, I’ve developed quite a remarkable hypothesis: we should all be proteins! With the twenty-one essential amino acids there exists hundreds of thousands of diverse protein structures, and I’ve theorized that there is a protein molecule to symbolize every one of our diverse characters. Through these protein identities, we will find new connections among each other stemming from the unique backbones we hold. We all hold a piece to a puzzle, a substrate to an enzyme, an important responsibility to another person, so let’s link our diversified personalities together like amino acids on a peptide chain to synthesize ravishing multi-dimensional complexes that will never denature. After, we can all share my dream of becoming a protein, and I can make my fourth grade teacher proud.